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Verbs 

■  John likes Mary 

■  Mary kicked John 

■  Bill is coughing 

■  Bill travelled to Paris 



Donald Davidson‘s Problem 
(1) The gardener killed the baron at midnight in the park 

   ⇒ kill4(g, b, m, p) 

(2) The gardener killed the baron at midnight  

   ⇒ kill3(g, b, m) 

(3) The gardener killed the baron in the park 

    ⇒ kill2(g, b, p) 

(4) The gardener killed the baron 

    ⇒ kill1(g, b)  
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Davidson’s Problem 
■  How can the systematic entailment 

relations between the different uses of kill 
be explained? 

■  Naïve FOL interpretation does not answer 
this question: 
■  kill4(g, b, m, p) I≠ kill3(g, b, m) 
■  kill3(g, b, m) I≠ kill1(g, b) 
■  etc. 

(1) 

(4) 

(3) (2) 
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■  Determine the maximum arity n of the predicate.  

■  Take n to be the arity of the predicate. 

■  Bind syntactically empty argument positions with 
existential quantification. 

 (1) ⇒ kill(g, b, m, p) 

 (2) ⇒ ∃y kill(g, b, m, y) 

 (3) ⇒ ∃x kill(g, b, x, p) 

 (4) ⇒ ∃x∃y kill(g, b, x, y) 

■  But: What is the maximum arity of a predicate? 

 The gardener killed the baron  at midnight in the park 
under cover of absolute darkness with a gun out of jealousy 
…  

A possible solution? 



Event Arguments 
■  Davidson’s Solution: Verbs denote events. 

■  Example: The transitive kill is represented by a three-
place relation kill’. The first argument of kill’ is an 
event variable, which existentially bound: 

  ∃e kill’(e,g,b)    
■  In general, n-place event verbs are represented by 

relations of arity n+1. 

■  Adjuncts denote two-place relations between an event   
and a time, a location, or other kinds of circumstantial 
information. 
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Davidson‘s Problem Solved 
 The gardener killed the baron  at midnight in the park 

  ⇒ ∃e [kill’(e,g,b) ∧ time(e,m) ∧ location(e,p)] 

■  Entailment problem is solved: 

■  Arbitrary number of adjuncts can be naturally represented 
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∃e [kill’(e,g,b) ∧ time(e,m) ∧ location(e,p)] 

∃e [kill’(e,g,b) ∧ time(e,m)] ∃e [kill’(e,g,b) ∧ location(e,p)] 

∃e [kill’(e,g,b)] 



Event Verbs and Nominal Event 
Predicates 
■  Bill saw an elephant. 

 ∃e∃x [see(e, b, x) ∧ elephant(x)] 

■  Bill saw an accident. 

 ∃e∃e' [ see(e, b, e') ∧ accident(e')] 

■  Bill saw the children play 

 ∃e∃e' [ see(e, b, e') ∧ play(e', the-children)] 
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Model Structure with Events 

■  We enrich model structures with ontological information in 
the traditional Aristotelian sense of ontology:  

■  Ontology is the area  of philosophy identifying and 
describing the basic “categories of being and their 
relations” 
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Model Structure with Events 

■  We assume two disjoint classes, or kinds, or sorts of 
entities:  
■  A set of “standard individuals” or “objects” U 
■  A set of events E 

■  A model structure with events is a triple 
M = ⟨U, E, V⟩,  
with a set of standard individuals U, 
a set of events E, and  
an interpretation function V.  

■  Note: Both standard objects and events are both possible 
denotations of type e expressions. Entities (in the general sense) 
may be either standard objects or events. 
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Sorted Logic 

■  We a separate inventory of individual variables (Type e 
variables) for each of the two sorts of individuals in addition 
to the general, sort-unspecific variable set. 

■  (Standard) Object variables: VarU = u, v, w, ... 

  (or just: x, y, z, ...; see below) 

■  Event variables:   VarE = e, e’, e’’, …, , e1, e2, … 

■  Note: Both standard object and event variables are of type e. 
Formally, we have to distinguish two types of sorted variables 
plus general variables without sortal restrictions. Practically, we 
often collapse standard-object and general variables, and assume 
that the disambiguation becomes clear from context. 
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Sorted Logic 

■  A variable assignment function g assign variables an 
individual of the appropriate sort-specific domain: 
■  g(u) ∈ U for u ∈ VarU 
■  g(e) ∈ E for e ∈ VarE 

■  Quantification ranges over sort-specific domains: 
■  ⟦∃u Φ ⟧M,g = 1 iff  there is an a ∈ U s.t. ⟦ Φ ⟧M,g[u/a] = 1  
■  ⟦∃e Φ ⟧M,g = 1 iff  there is an a ∈ U s.t. ⟦ Φ ⟧M,g[e/a] = 1  
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Event-Denoting Nouns and Verbs 

■  Events as first-class ontological entities simultaleously solve 
several problems of semantic representation.  

■  We can model: 
■  event-denoting nouns (travel, accident, lecture) and standard-

object denoting nouns 
■  verbs taking overt event arguments (start, end, last), 
■  verbs which are unspecific w.r.to the argument sort (see) 
■  events being alternatively realize by nouns and verbs (travel) 
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Sortal Constraints 

■  Non-logical constants of sortal constraints come with sortal 
constraints on their argument positions.  
■  accident‘ takes an event argument 
■  start‘ takes an implicit and an overt event argument 
■  see‘ takes (1) an (implicit) event argument, (2) a 

standard-object argument, and (3) an argument that can 
be either event or standard object. 
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Event Semantics: 
Compositional Derivation of Adjuncts 

■  Treatment of adjuncts as predicate modifiers, in analogy to 
attributive adjectives: type  ((e,t),(e,t)): 

■  Intersective adjectives modify nominal predicates: 
■  Representation of the intersective adjective red: 

  red ⇒ λFλx[F(x) ∧ red*(x)] ,  
 modifying, e.g.,  λx[book’(x)]  

■  Adjuncts modify event predicates, represented by 
sentences: 
■  at midnight  ⇒ λEλe[E(e) ∧ time(e, midnight)],  

 modifying, e.g., λe[kick’(e, m*, j*)] 
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Event Semantics: 
Compositional Derivation of Adjuncts 

■  kill   ⇒   λy λx λe [ kill(e, x, y) ] : ⟨e,⟨e,⟨e,t⟩⟩⟩ 

■  the baron  ⇒   b : e 

■  the gardener  ⇒   g : e 

■  at midnight   ⇒   λFλe[F(e) ∧ time(e, midnight)] : ⟨⟨e,t⟩,⟨e,t⟩⟩ 

■  in the park    ⇒  λFλe[F(e) ∧ location(e, park)] : ⟨⟨e,t⟩,⟨e,t⟩⟩ 
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Event Semantics: 
Compositional Derivation of Adjuncts 
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■  The gardener killed the baron 
  ⇒ λy λx λe [ kill(e, x, y) ](g)(b) 

■  … at midnight 
  ⇒ λF λe [ F(e) ∧ time(e, midnight) ](λe [ kill(e, g, b) ]) 
  ⇔ λe  [ kill(e, g, b) ∧ time(e, midnight) ] 

■  … in the park 
  ⇒ λFλe[F(e) ∧ location(e, park)](λe[kill(e, g, b) ∧ time(e, m.)]) 
  ⇔ λe[kill(e, g, b) ∧ time(e, midnight) ∧ location(e, park)] 

■  “Existential closure”: 
  ∃e[kill(e, g, b) ∧ time(e, midnight) ∧ location(e, park)] 



Adjuncts and Modifiers [1] 

■  Uniform semantic representation for adjuncts and post-
nominal modifiers:   

  in the park  ⇒  λFλx[F(x) ∧ location(x, park)] 

■  Adjunct: 

 [S[SThe gardener killed the baron ] [PPin the park]] 

  ⇒   λFλx[F(x) ∧ location(x, park)](λe.kill(e, g, b)) 

  ⇔   λe[kill(e, g, b) ∧ location(e, park)] 
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Adjuncts and Modifiers [2] 

■  Uniform semantic representation for adjuncts and post-
nominal modifiers:   

  in the park  ⇒  λFλx[F(x) ∧ location(x, park)] 

■  Post-nominal modifier of an event noun: 

 (a) [N [N felony] [PP in the park]] 

  ⇒   λFλx[F(x) ∧ location(x, park)](λe.felony(e)) 

  ⇔  λe[felony(e) ∧ location(e, park)] 
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Adjuncts and Modifiers [2] 

■  Uniform semantic representation for adjuncts and post-
nominal modifiers:   

  in the park  ⇒  λFλx[F(x) ∧ location(x, park)] 

■  Post-nominal modifier of a standard noun: 

 (a) [N [N fountain] [PP in the park]] 

  ⇒  λFλx[F(x) ∧ location(x, park)](λe.fountain(e)) 

  ⇔  λx[fountain(x) ∧ location(x, park)] 
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Tense 

■  Natural-language sentences are tensed: 
John is walking 
John walked 
John will walk 

■  Representation of tense in conventional tense logic: 
walk(john) 
Pwalk(john) 
Fwalk(john) 
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Classical Tense Logic 

■  Tense-logical model structure: M = <U, T, <, V> 
■  U, T non-empty sets, U ∩T = ∅ 
■  < a linear ordering on T 
■  V a value assignment function, which assigns to every non-

logical constant α a function from T to appropriate     
denotations of α 

■  Interpretation of tense operators: 
 ⟦PA⟧M, t = 1 iff  ⟦A⟧M, t’ = 1 for at least one t' < t 
 ⟦FA⟧M,t = 1 iff  ⟦A⟧M, t’ = 1 for at least one t' > t 

22 



Temporal Relations in Natural 
Language 

■  The door opened, and Mary entered the room. 

■  John arrived. Then Mary left. 

■  Mary left, before John arrived. 

■  John arrived. Mary had left already. 
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Event Semantics: 
An Alternative Treatment of Tense 

■  A temporally ordered event structure is defined as 
M = (U, E , <, eu, V),  
with U∩E = ∅,  
 < ⊆ E×E  an asymmetric relation (temporal precedence) 
eu∈E  the utterance event 
V an interpretation function  

■  Definition of overlapping events: 

  e o e'  iff   neither  e < e'  nor e' < e  
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Event Semantics: 
Tense in Semantic Construction 

■  Tense is encoded in the verb inflection. 

■  We can represent inflection as an 
abstract tense operator commanding the 
untensed rest of the sentence. 

■  Semantic representation of tense 
operators expresses temporal location of 
the reported event with respect to the 
utterance event: 

  PAST ⇒ λE∃e(E(e) ∧ e < eu):  ⟨⟨e,t⟩,t⟩ 

  PRES ⇒ λE∃e(E(e) ∧ e o eu):   ⟨⟨e,t⟩,t⟩ 
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Event Semantics: 
Tense in Semantic Construction 

■  Application of the tense operator 
integrates temporal information and at the 
same time binds the open event variable: 

 walk ⇒ λx λe [walk(e, x)] 

 Bill walk  ⇒ λx λe [walk(e, x)](b) 
  ⇔ λe [walk(e, b)] 

 Bill walk PAST   

  ⇒ λE ∃e[E(e) ∧ e<eu](λe [walk(e, b)]) 
 ⇔ ∃e [λe [walk(e, b)](e) ∧ e<eu] 
 ⇔ ∃e [walk(e, b) ∧ e<eu] 
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Time Expressions 

■  John arrived at 9 p.m. 

■  The lecture is on Tuesday. 

■  Mozart was born in 1756. 

■  Mary had left two hours, before John arrived. 
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Event Structures with Explicit Time 
Representations 

■  An temporal event structure: 
M = ⟨U, E , T, <, tu, tl, V⟩,  
U, E, and T non-empty and  mutually disjoint, 
 < a linear ordering on T 
tu∈T is the utterance time 
tl a function from E to intervals in T (“temporal location”) 
V an interpretation function 

■  Definition of event precedence and overlap: 
  e < e'  iff   for all t ∈ tl(e), t'∈ tl(e'):   t < t’ 
  e o e'  iff   tl(e) ∩ tl(e') ≠ ∅ 
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